2,962 research outputs found

    Physics-Based Swarm Intelligence for Disaster Relief Communications

    Get PDF
    This study explores how a swarm of aerial mobile vehicles can provide network connectivity and meet the stringent requirements of public protection and disaster relief operations. In this context, we design a physics-based controlled mobility strategy, which we name the extended Virtual Force Protocol (VFPe), allowing self-propelled nodes, and in particular here unmanned aerial vehicles, to fly autonomously and cooperatively. In this way, ground devices scattered on the operation site may establish communications through the wireless multi-hop communication routes formed by the network of aerial nodes. We further investigate through simulations the behavior of the VFPe protocol, notably focusing on the way node location information is disseminated into the network as well as on the impact of the number of exploration nodes on the overall network performance.Comment: in International Conference on Ad Hoc Networks and Wireless, Jul 2016, Lille, Franc

    Synthesis of biodegradable and antimicrobial nanocomposite film reinforced for coffee and agri-food product preservation.

    Get PDF
    The antimicrobial activity of silver nanoparticles is widely known. However, their application to biodegradable polymeric materials is still limited. In this work, we report a strategy involving the green synthesis of nanocomposite films based on a natural biodegradable matrix. Nanometer-sized silver nanoparticles (C-AgNPs) were synthesized with the aid of ultrasound waves between the silver nitrate solution and the nanocurcumin solution. The green synthesized C-AgNPs were found to have particle sizes in the range of 5–25 nm and demonstrated good antimicrobial activity against Clostridium perfringens, Staphylococcus aureus, Bacillus subtilis, Macrophoma theicola, and Aspergillus flavus. Owing to their physical–chemical and mechanical properties and the excellent antimicrobial activities, the obtained AgNPs were used together with chitosan, cassava starch, and poly(vinyl alcohol) (PVA) to make nanocomposite films, which are suitable for the packaging requirements of various key agricultural and food products such as coffee beans, bamboo straws, and fruits. The nanocomposite films lost up to 85% of their weight after being buried in the soil for 120 days. This indicates that the films made with natural biodegradable materials are environmentally friendly

    The effect of surface character on flows in microchannels

    Get PDF
    A technique for quantifying velocity profiles of fluids flowing in circular microchannels is presented. The primary purpose of this technique is to provide a robust method for quantifying the effect Of Surface character on the bulk fluid behaviour. A laser-scanning confocal microscope has been used to obtain fluorescent particle images from a 1 micron thick plane along the centreline of hydrophobic and hydrophilic glass capillaries. The velocities of fluorescent particles being carried in pressure-driven laminar flow of a Newtonian fluid have been evaluated at the centreplane of 57.5 micron capillaries using a variation of particle tracking velocimetry (PTV). This work aims to clarify inconsistencies in previously reported [1-12] slip velocities observed in water over hydrophobically modified surfaces at micron and submicron lengthscales. A change in the velocity profile is observed for water flowing in hydrophobic capillaries, although the behaviour appears to be a result of an optical distortion at the fluid-wall interface. This may point to previous suggestions of a thin layer of air adsorbing to the surface. Notwithstanding, the results do not confidently suggest evidence of slip of water on hydrophobic surfaces in microchannels

    Practical Fertilization Procedure and Embryonic Development of the New Zealand Geoduck Clam (Panopea Zelandica)

    Get PDF
    Copyright © Marine Biological Association of the United Kingdom 2016Cultivation of the geoduck Panopea zelandica (Quoy & Gaimard, 1835) requires knowledge on embryonic development to produce spat in hatcheries. This study investigated the development of P. zelandica embryos at 15°C and 35 ppt and the optimal sperm:egg ratios for fertilization under hatchery conditions. Panopea zelandica broodstock were induced to spawn by serotonin injection. Sperm and eggs were collected and fertilization was conducted at sperm:egg ratios of: 50:1, 100:1, 500:1, 1000:1 and 10,000:1 over 40 min. The optimal sperm:egg ratio was <500:1 and the normal embryo yield at 3 and 18 h post-fertilization (hpf) ranged from 83–96%. Panopea zelandica eggs (~80 μm diameter) developed the first and second polar bodies within 15–20 and 50–55 min post-fertilization, respectively. The blastula appeared at ~8 hpf, including the XR and XL cells and the presumptive shell field depression. Gastrulation occurred at 12–18 hpf with organic material apparent at the shell field depression. The mid-stage trochophore, which appeared at around 35 hpf had an apical plate with an apical tuft. The shell field spread to form the periostracum, which expanded and folded into right and left segments covering the late trochophore. The early D-stage veliger appeared at 45 hpf with the soft body being enclosed by two valves and the appearance of the velum. These observations will serve as the basis for future analyses of P. zelandica embryogenesis and for optimization of commercial production of D-veliger larvae

    Characteristics and outcome of patients with newly diagnosed advanced or metastatic lung cancer admitted to intensive care units (ICUs)

    Get PDF
    BACKGROUND: Although patients with advanced or metastatic lung cancer have poor prognosis, admission to the ICU for management of life-threatening complications has increased over the years. Patients with newly diagnosed lung cancer appear as good candidates for ICU admission, but more robust information to assist decisions is lacking. The aim of our study was to evaluate the prognosis of newly diagnosed unresectable lung cancer patients. METHODS: A retrospective multicentric study analyzed the outcome of patients admitted to the ICU with a newly diagnosed lung cancer (diagnosis within the month) between 2010 and 2013. RESULTS: Out of the 100 patients, 30 had small cell lung cancer (SCLC) and 70 had non-small cell lung cancer. (Thirty patients had already been treated with oncologic treatments.) Mechanical ventilation (MV) was performed for 81 patients. Seventeen patients received emergency chemotherapy during their ICU stay. ICU, hospital, 3- and 6-month mortality were, respectively, 47, 60, 67 and 71%. Hospital mortality was 60% when invasive MV was used alone, 71% when MV and vasopressors were needed and 83% when MV, vasopressors and hemodialysis were required. In multivariate analysis, hospital mortality was associated with metastatic disease (OR 4.22 [1.4-12.4]; p = 0.008), need for invasive MV (OR 4.20 [1.11-16.2]; p = 0.030), while chemotherapy in ICU was associated with survival (OR 0.23, [0.07-0.81]; p = 0.020). CONCLUSION: This study shows that ICU management can be appropriate for selected newly diagnosed patients with advanced lung cancer, and chemotherapy might improve outcome for patients with SCLC admitted for cancer-related complications. Nevertheless, tumors' characteristics, numbers and types of organ dysfunction should be taken into account in the decisional process before admitting these patients in ICU.Peer reviewe

    Simulations of extensional flow in microrheometric devices

    Get PDF
    We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels

    Mathematically Gifted Adolescents Have Deficiencies in Social Valuation and Mentalization

    Get PDF
    Many mathematically gifted adolescents are characterized as being indolent, underachieving and unsuccessful despite their high cognitive ability. This is often due to difficulties with social and emotional development. However, research on social and emotional interactions in gifted adolescents has been limited. The purpose of this study was to observe differences in complex social strategic behaviors between gifted and average adolescents of the same age using the repeated Ultimatum Game. Twenty-two gifted adolescents and 24 average adolescents participated in the Ultimatum Game. Two adolescents participate in the game, one as a proposer and the other as a responder. Because of its simplicity, the Ultimatum Game is an apt tool for investigating complex human emotional and cognitive decision-making in an empirical setting. We observed strategic but socially impaired offers from gifted proposers and lower acceptance rates from gifted responders, resulting in lower total earnings in the Ultimatum Game. Thus, our results indicate that mathematically gifted adolescents have deficiencies in social valuation and mentalization

    Immunological characterization of chromogranins A and B and secretogranin II in the bovine pancreatic islet

    Get PDF
    Antisera against chromogranin A and B and secretogranin II were used for analysing the bovine pancreas by immunoblotting and immunohistochemistry. All three antigens were found in extracts of fetal pancreas by one dimensional immunoblotting. A comparison with the soluble proteins of chromaffin granules revealed that in adrenal medulla and in pancreas antigens which migrated identically in electrophoresis were present. In immunohistochemistry, chromogranin A was found in all pancreatic endocrine cell types with the exception of most pancreatic polypeptide-(PP-) producing cells. For chromogranin B, only a faint immunostaining was obtained. For secretorgranin II, A-and B-cells were faintly positive, whereas the majority of PP-cells exhibited a strong immunostaining for this antigen. These results establish that chromogranins A and B and secretogranin II are present in the endocrine pancreas, but that they exhibit a distinct cellular localization

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Information processing using a single dynamical node as complex system

    Get PDF
    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing
    corecore